0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зависимость скорости велосипеда от времени выражается уравнением

Зависимость скорости велосипеда от времени выражается уравнением

1. Производят наполнение металлического цилиндра простым насыпанием грунта до необходимой высоты.

2. Снимают с цилиндра дно с латунной сеткой и цилиндр в вертикальном положении задавливают непосредственно в грунт.

3. Наполняют корпус водой и совмещают с помощью винта отметку 1 на планке напорного градиента с верхним краем крышки.

4. С помощью винта медленно погружают фильтрационную трубку с грунтом в воду до отметки напорного градиента I = 0,8. В таком положении оставляют прибор до момента появления влаги в верхнем торце цилиндра, о чём судят по изменившемуся цвету грунта.

5. Помещают на грунт латунную сетку, надевают на трубку муфту и вращением винта опускают фильтрационную трубку в крайнее нижнее положение.

6. Заполняют мерный баллон водой, предварительно измерив её температуру, зажимают его отверстие большим пальцем и, быстро опрокинув, вставляют в муфту фильтрационной трубки так, чтобы горлышко баллона соприкасалось с латунной сеткой.

7. Устанавливают планку на градиент I = 0,6 и доливают воду в корпус до верхнего края.

8. Отмечают по шкале уровень воды в мерном баллоне, через 300 сек замечают второй уровень воды в мерном баллоне. Для получения средней величины коэффициента фильтрации повторяют замеры расхода воды при различных положениях уровня воды в мерном баллоне.

9. Опустив цилиндр с грунтом в крайнее нижнее положение, снимают мерный баллон, заполняют его водой и вновь вставляют в муфту.

10. Производят опыт при напорном градиенте I = 0,8.

11. По данным опыта производят расчет коэффициента фильтрации по формуле:

K10 — коэффициент фильтрации при t=10°С;

Q — расход воды, мл;

Р — площадь поперечного сечения цилиндра, см 2 ;

I — напорный градиент;

r — температурная поправка (0,71 + 0,03∙t°);

t° — температура фильтрующейся воды;

864 — переводной коэффициент из см/сек в м/сутки.

12. Данные опыта приводят в таблице 9.

Таблица 9 — Определение коэффициента фильтрации песка

Контрольные вопросы

1. Что называетсяводопроницаемостью грунта?

2. Чем характеризуется водопроницаемость грунта?

3. От чего зависит коэффициент фильтрации?

4. Где используется значение коэффициента фильтрации?

5. Что такое напорный градиент?

Рисунок 9 — Прибор для определения коэффициента фильтрации песчаных

1-стеклянный баллон; 2-муфта; 3,7-латунная сетка; 4-планка; 5-металлический цилиндр; 6-дно; 8-винт; 9-крышка; 10-корпус; 11-подставка.

ЗАДАНИЯ К ВЫПОЛНЕНИЮ ТИПОВОГО РАСЧЁТА ПО ФИЗИКЕ НАПРАВЛЕНИЯ «МЕТАЛЛУРГИЯ» 1 СЕМЕСТР

Скорость и ускорение прямолинейного движения в общем случае определяются формулами

В случае прямолинейного равномерного движения

В случае прямолинейного равнопеременного движения

В этих уравнениях ускорение a положительно при равноускоренном движении и отрицательно при равнозамедленном.

При криволинейном движении полное ускорение

Здесь aτ — тангенциальное (касательное) ускорение и an — нормальное (центростремительное) ускорение, причем

где υ — скорость движения и R — радиус кривизны траектории в данной точке.

При вращательном движении в общем случае угловая скорость и угловое ускорение находятся по формулам

В случае равномерного вращательного движения угловая скорость

где Т — период вращения, n — частота вращения, т.е. число оборотов в единицу времени.

Угловая скорость ω связана с линейной скоростью υ соотношением υ= ωR.

Тангенциальное и нормальное ускорения при вращательном движении могут быть выражены в виде

1. 1. Капля дождя при скорости ветра υ = 11 м/с падает под углом α = 30° к вертикали. Определить, при какой скорости ветра υ2 капля будет падать под углом β = 45°.

1. 2. Два автомобиля, выехав одновременно из одного пункта, движутся прямолинейно в одном направлении. Зависимость пройденного ими пути задается уравнениями s1 = At + Bt 2 и s2 = Ct + Dt 2 + Ft 3 . Определить относительную скорость u автомобилей.

1. 3. Велосипедист проехал первую половину времени своего движения со скоростью υ1 = 16 км/ч, вторую половину времени — со скоростью υ2 = 12 км/ч. Определить среднюю скорость движения велосипедиста.

1. 4. Велосипедист проехал первую половину пути со скоростью υ1 = 16 км/ч, вторую половину пути — со скоростью υ2 = 12 км/ч. Определить среднюю скорость движения велосипедиста.

1. 5. Студент проехал половину пути на велосипеде со скоростью υ1=16 км/ч. Далее половину оставшегося времени он ехал со скоростью υ2 = 12 км/ч, а затем до конца пути шел пешком со скоростью υ3 = 5 км/ч. Определить среднюю скорость движения студента на всем пути.

1. 6. В течение времени τ скорость тела задается уравнением вида υ = А + Bt + Сt 2 (0≤ t ≤τ). Определить среднюю скорость за промежуток времени τ.

1. 7. При падении камня в колодец его удар о поверхность воды доносится через t=5 с. Принимая скорость звука υ = 330 м/с, определить глубину колодца.

1. 8. Тело падает с высоты h=1 км с нулевой начальной скоростью. Пренебрегая сопротивлением воздуха, определить, какой путь пройдет тело: 1) за первую секунду своего падения; 2) за последнюю секунду своего падения.

1. 9. Тело падает с высоты h=1 км с нулевой начальной скоростью. Пренебрегая сопротивлением воздуха, определить, какое время понадобится телу для прохождения: 1) первых 10 м своего пути; 2) последних 10 м своего пути.

1. 10. Тело брошено под углом к горизонту. Оказалось, что максимальная высота подъема h= (s — дальность полета). Пренебрегая сопротивлением воздуха, определить угол броска к горизонту.

1. 11. Тело брошено со скоростью υo= 15 м/с под углом α=30° к горизонту. Пренебрегая сопротивлением воздуха, определить: 1) высоту h подъема тела; 2) дальность полета (по горизонтали) s тела; 3) время его движения.

1. 12. Тело брошено со скоростью υo = 20 м/с под углом α=30° к горизонту. Пренебрегая сопротивлением воздуха, определить для момента времени t=1,5 с после начала движения: 1) нормальное ускорение; 2) тангенциальное ускорение.

1. 13. С башни высотой h=40 м брошено тело со скоростью υo =20 м/с под углом α=45° к горизонту. Пренебрегая сопротивлением воздуха, определить: 1) время t движения тела; 2) на каком расстоянии s от основания башни тело упадет на Землю; 3) скорость υ падения тела на Землю; 4) угол φ, который составит траектория тела с горизонтом в точке его падения.

1. 14. Тело брошено горизонтально со скоростью υo = 15 м/с. Пренебрегая сопротивлением воздуха, определить радиус кривизны траектории тела через t= 2 с после начала движения.

1. 15. С башни высотой h = 30 м в горизонтальном направлении брошено тело с начальной скоростью υo = 10 м/с. Определить: 1) уравнение траектории тела у(х); 2) скорость υ тела в момент падения на Землю; 3) угол φ, который образует эта скорость с горизонтом в точке его падения.

1. 16. Зависимость пройденного телом пути от времени задается уравнением s = ABt + Ct 2 + Dt 3 (A = 6 м, В=3 м/с, С=2 м/с 2 , D=l м/с 3 ). Определить для тела в интервале времени от t1 = 1 с до t2=4 с: 1) среднюю скорость; 2) среднее ускорение.

1. 17. Зависимость пройденного телом пути от времени задается уравнением s = А + Bt + Ct 2 + Dt 3 (С = 0,1 м/с 2 , D = 0,03 м/с 3 ). Определить: 1) через сколько времени после начала движения ускорение а тела будет равно 2 м/с 2 ; 2) среднее ускорение тела за этот промежуток времени.

1. 18. Тело движется равноускоренно с начальной скоростью υo. Определить ускорение тела, если за время t = 2 c оно прошло путь s = 16 м и его скорость υ = 3 υo.

1. 19. Материальная точка движется вдоль прямой так, что ее ускорение линейно растет, и за первые 10 c достигает значения 5 м/с 3 . Определить в конце десятой секунды: 1) скорость точки; 2) пройденный точкой путь.

где С1 = —2 м/с 2 , С2 = 1 м/с 2 . Определить: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорения а1 и а2 для этого момента.

1. 22. Нормальное ускорение точки, движущейся по окружности радиусом r = 4 м, задается уравнением аn = А + Bt + Ct 2 (А=1 м/с 2 , В = 6 м/с 3 , С = 9 м/с 4 ). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1 = 5 с после начала движения; 3) полное ускорение для момента времени t2 = 1 с.

1. 23. Зависимость пройденного телом пути s от времени t выражается уравнением s = AtBt 2 + Ct 3 (A = 2 м/с, В=3 м/с 2 , С=4 м/с 3 ). Записать выражения для скорости и ускорения. Определить для момента времени t = 2 с после начала движения: 1) пройденный путь; 2) скорость; 3) ускорение.

1. 24. Зависимость пройденного телом пути по окружности радиусом r = 3 м задается уравнением s = At 2 + Bt (A = 0,4 м/с 2 , В = 0,1 м/с). Определить для момента времени t = 1 с после начала движения ускорения: 1) нормальное; 2) тангенциальное; 3) полное.

1. 25. Радиус-вектор материальной точки изменяется со временем по закону r = t 3 i + 3t 2 j, где i, j — орты осей х и у. Определить для момента времени t = 1 с: 1) модуль скорости; 2) модуль ускорения.

1. 26. Радиус-вектор материальной точки изменяется со временем по закону r=4t 2 i+3tj+2k. Определить: 1) скорость υ; 2) ускорение а; 3) модуль скорости в момент времени t = 2 с.

1. 27. Материальная точка начинает двигаться по окружности радиусом r = 12,5 см с постоянным тангенциальным ускорением аτ = 0,5 см/с 2 . Определить: 1) момент времени, при котором вектор ускорения a образует с вектором скорости υ угол α = 45°; 2) путь, пройденный за это время движущейся точкой.

1. 28. Линейная скорость υ1 точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость υ2 точки, находящейся на 6 см ближе к его оси. Определить радиус диска.

1. 29. Колесо вращается с постоянным угловым ускорением ε = 3 рад/с 2 . Определить радиус колеса, если через t = 1 с после начала движения полное ускорение колеса а = 7,5 м/с 2 .

1. 30. Найти линейную скорость υ вращения точек земной поверхности на широте Санкт-Петербурга (φ = 60 о ).

1. 31. Якорь электродвигателя, имеющий частоту вращения n=50 с -1 , после выключения тока, сделав N = 628 оборотов, остановился. Определить угловое ускорение ε якоря.

1. 32. Колесо автомашины вращается равнозамедленно. За время t = 2 мин оно изменило частоту вращения от 240 до 60 мин- 1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

1. 33. Точка движется по окружности радиусом R = 15 см с постоянным тангенциальным ускорением аτ. К концу четвертого оборота после начала движения линейная скорость точки υ= 15 см/с. Определить нормальное ускорение аn точки через t = 16 с после начала движения.

1. 34. Диск радиусом R = 10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = A+Вt+Ct 2 +Dt 3 (В = 1 рад/с, С = 1 рад/с 2 , D = 1 рад/с 3 ). Определить для точек на ободе диска к концу второй секунды после начала движения: 1) тангенциальное ускорение aτ; 2) нормальное ускорение аn; 3) полное ускорение а.

1. 35. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = At 2 (A = 0,1 рад/с 2 ). Определить полное ускорение а точки на ободе диска к концу второй секунды после начала движения, если линейная скорость этой точки в этот момент υ = 0,4 м/с.

1. 36. Диск радиусом R = 10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением υ = At + Bt 2 (A = 0,3 м/с 2 , B = 0,1 м/с 3 ). Определить момент времени, для которого вектор полного ускорения a образует с радиусом колеса угол φ = 4°.

1. 37. Во сколько раз нормальное ускорение аn точки, лежащей на ободе вращающегося колеса, больше ее тангенциального ускорения аτ для того момента, когда вектор полного ускорения точки составляет угол α = 30 о с вектором ее линейной скорости?

Зависимость скорости велосипеда от времени выражается уравнением

Задача № 1. Автомобиль, двигаясь с ускорением -0,5 м/с 2 , уменьшил свою скорость от 54 до 18 км/ч. Сколько времени ему для этого понадобилось?

Задача № 2. При подходе к станции поезд начал торможение, имея начальную скорость 90 км/ч и ускорение 0,1 м/с 2 . Определите тормозной путь поезда, если торможение длилось 1 мин.

Задача № 3. По графику проекции скорости определите: 1) начальную скорость тела; 2) время движения тела до остановки; 3) ускорение тела; 4) вид движения (разгоняется тело или тормозит); 5) запишите уравнение проекции скорости; 6) запишите уравнение координаты (начальную координату считайте равной нулю).

Решение:

Задача № 4. Движение двух тел задано уравнениями проекции скорости:
v1x(t) = 2 + 2t
v2x(t) = 6 – 2t
В одной координатной плоскости постройте график проекции скорости каждого тела. Что означает точка пересечения графиков?

Задача № 5. Движение тела задано уравнением x(t) = 5 + 10t — 0,5t 2 . Определите: 1) начальную координату тела; 2) проекцию скорости тела; 3) проекцию ускорения; 4) вид движения (разгоняется тело или тормозит); 5) запишите уравнение проекции скорости; 6) определите значение координаты и скорости в момент времени t = 4 с . Сравним уравнение координаты в общем виде с данным уравнением и найдем искомые величины.

Решение:

Задача № 6. Вагон движется равноускоренно с ускорением -0,5 м/с 2 . Начальная скорость вагона равна 54 км/ч. Через сколько времени вагон остановится? Постройте график зависимости скорости от времени.

Задача № 7. Самолет, летевший прямолинейно с постоянной скоростью 360 км/ч, стал двигаться с постоянным ускорением 9 м/с 2 в течение 10 с в том же направлении. Какой скорости достиг самолет и какое расстояние он пролетел за это время? Чему равна средняя скорость за время 10 с при ускоренном движении?

Задача № 8. Трамвай двигался равномерно прямолинейно со скоростью 6 м/с, а в процессе торможения — равноускоренно с ускорением 0,6 м/с 2 . Определите время торможения и тормозной путь трамвая. Постройте графики скорости v(t) и ускорения a(t).

Задача № 9. Тело, имея некоторую начальную скорость, движется равноускоренно. За время t = 2 с тело прошло путь S = 18 м , причём его скорость увеличилась в 5 раз. Найти ускорение и начальную скорость тела.

Задача № 10. (повышенной сложности) Прямолинейное движение описывается формулой х = –4 + 2t – t 2 . Опишите движение, постройте для него графики vx(t), sx(t), l(t) .

Задача № 11. ОГЭ Поезд, идущий со скоростью v0 = 36 км/ч , начинает двигаться равноускоренно и проходит путь S = 600 м , имея в конце этого участка скорость v = 45 км/ч . Определить ускорение поезда а и время t его ускоренного движения.

Краткое пояснение для решения
ЗАДАЧИ на Прямолинейное равноускоренное движение.

Равноускоренным движением называется такое движение, при котором тело за равные промежутки времени изменяет свою скорость на одну и ту же величину. Движение, при котором скорость равномерно уменьшается, тоже считают равноускоренным (иногда его называют равнозамедленным).

Величины, участвующие в описании равноускоренного движения, почти все векторные. При решении задач формулы записывают обычно через проекции векторов на координатные оси. Если тело движется по горизонтали, ось обозначают буквой х, если по вертикали — буквой у.

Если векторы скорости и ускорения сонаправлены (их проекции имеют одинаковые знаки), тело разгоняется, т. е. его скорость увеличивается. Если же векторы скорости и ускорения противоположно направлены, тело тормозит.

Это конспект по теме «ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями». Выберите дальнейшие действия:

  • Поделись с друзьями:
  • Facebook
  • Твитнуть
  • Google+
  • Pinterest
  • VKontakte
  • Email
  • Odnoklassniki
  • WhatsApp
  • Mail.ru
  • Viber
  • Telegram
  • LiveJournal

5 Комментарии

«отрицательного ускорения» не бывает. Если движущееся тело снижает скорость-вступает в силу 3-й Закон Ньютона: F/m равно, или больше S/tt. Ньютон пытался уравнять ускорения S/tt и F/m, но ошибка в формуле S=att/2 не позволяла . Ошибку эту он сделал, когда искал ускорение свободного падения «яблока…» Конечная скорость-(9,8…) это НЕ at! at-это СРЕДНЯЯ скорость! Она равна (0+V конечная)/2.
V средняя=at. Vконечная=2at. S=(0+2at)/2*t. S=att (и-НИКАКИХ «/2)!
…..Если тело весом (массой) m кг., прошло путь S за время t, то ускорения S/tt=F/m. Искать просто ускорение- бессмысленно. Оно должно помочь найти S,t,F,m,V… Задача: камень весом 25 кг. передвинули на 40 м. за минуту. Вопрос: какую приложили силу- (F) ?
Решение: 40/3600=F/25. Ответ: 0,28 км.м/с. («крутящий момент»)
Задача: этот-же камень, с таким-же «упорством» тащили …100 м. Вопрос: t ? Решение: 100/tt=0,28/25. Ответ: 1,5 минуты (95 секунд).
«Законы» Ньютона пора пересмотреть… (при равномерном движении — НЕТ ускорения. А СРЕДНЯЯ скорость? А из неё и находим ускорение!)
При решении задач нельзя отнимать «скорость от скорости». Всякое движение -это энергия и время. И то и другое не может иметь знак «-«. Время не может пойти «вспять». И =Энергия. Она или есть, или её нет. S/tt=F/m -это значит, материя со временем переходит в энергию, а энергия со временем переходит в материю. ПРИРОДА- ВЕЧНА !

Спасибо за альтернативную точку зрения, не указанную в школьных учебниках физики. Надеюсь, это поможет учащимся расширить свой кругозор в области физики.

Ускорение — это вектор, а он отрицательным быть не может. Но вот проекция ускорения очень даже может быть отрицательной. И, прямо скажем, я не пойму что Вы тут написали, но попахивает каким-то бредом. Хотя бы потому, что at — это приращение скорости, а средняя скорость — это перемещение деленное на время движения, или путь на время движения, если интересует средняя ПУТЕВАЯ скорость. Деление же на 2, в уравнении движения возникает из-за правил интегрирования, которые говорят о том, что интеграл at по dt равен 0.5at^2/

«если тело прошло путь S за время t — график движения НЕ влияет ни на СРЕДНЮЮ скорость, ни на ускорение». А это значит, что не всегда «а» изменяет. скорость. При равномерном движении «а» такое-же, как и при любом движении, потому -что «Ускорение»- это ЭНЕРГИЯ, затраченная на движение, и она эквивалентна изменению скорости. S/tt. Будем считать, что это изменение скорости. Но F/m- это ЭНЕРГИЯ ! И она влияет на изменение скорости, измеряется так-же: «м/сек.сек.»
При решении задач на движение надо движение перевести в СРЕДНЮЮ скорость. А из НЕЁ и искать «ускорение».
У «яблока…» V нач.=0, V конеч.=9,8 м/с. V средняя=(0+9,8):2 V ср.=4,9 м/сек. S=V средняя (!)*t. 4,9*1=4,9 м.
«СРЕДНЯЯ скорость»-это «at». (при любом графике движения). «Конечная» скорость =2at. S=(0+2at)/2*t. S=a*tt, или at*t.
Задачка:… V нач.=10 м/с. V кон.=50 м/с. t=10 секунд. S=? a=? Решение:
Грубейшая ошибка: найти «а» : (50-10)/10. «а»=4 м/сек.сек. S=a*tt. 4*100=400 м.
Правильно будет так: (10+50)/2=30 м/с. Это-СРЕДНЯЯ скорость.. «а»=30/10. а=3 м/сек.сек. S=: V ср.*t=300 м. ; а*tt. 3*100=300 м S/tt=F/m. Ньютон ДОЛЖЕН был вывести такую формулу, но из-за ошибки «att/2» не смог…. S=a*tt = (at*t).
(не «заморачивай-те» головы студентов интегралами).

Тело движется прямолинейно под действием постоянной силы 12 Н, при этом зависимость координаты тела от времени имеет вид: (м). Определить: массу тела; импульс тела в момент времени t = 2 c ; среднюю скорость за промежуток времени от t1 = 0 c до t2 = 2 c.

Ссылка на основную публикацию
Adblock
detector